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Abstract

This paper deals with a general wavelet transform of FRFs for linear systems. Complex fractional
functions are used as wavelets and properties of the wavelet transform are studied. Then an efficient method
for estimating natural frequencies and dampings is proposed. The efficiency of the method is illustrated
with both analytical and experimental data of frequency response functions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations are often regarded as unpleasant and unwanted phenomena causing such
undesirable consequences as discomfort, noise, malfunctioning, wear, fatigue and even
destruction. Modal analysis is one of the strong and reliable vibration analysis tools needed by
modern engineering. Experimental modal analysis is the process of determining the modal
parameters by way of an experimental approach. The modal parameters may be determined by
analytical means, such as a finite element analysis, and one of the common reasons for
experimental modal analysis is the verification/correction of the results of the analytical approach.
Often, though, an analytical model does not always exist and the modal parameters determined
experimentally serve as the model for future evaluations such as structural modifications.
Single-degree-of-freedom (s.d.o.f.) methods such as the power bandwidth method, the circle fit

method [1,2] and the two-point finite difference formulae [3] are classical methods for modal
parameter estimation. Recently, Yin and Duhamel [4] proposed a three-point finite difference
formula; the application to both analytical data and experimental data has shown better accuracy

ARTICLE IN PRESS

*Corresponding author. Tel.: 33-1-641-53-725; fax: 33-1-641-53-741.

E-mail address: yin@lami.enpc.fr (H.P. Yin).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.03.002



of the three-point finite difference formula compared to the two-point finite difference formula.
Over the last 25 years, many multi-degree-of-freedom (m.d.o.f.) methods such as the least-squares
complex exponential, the polyreference time domain, Ibrahim time domain, eigensystem
realization algorithm, rational fraction polynomial, polyreference frequency domain and complex
mode indicator function have been investigated. In the frequency domain, these methods
generally use a least-squares method to select the modal parameters that minimize the difference
between the measured frequency response function (FRF) and the function found by summing the
contribution from the individual modes. These methods have been summarized in the books of
Allemang [3], Maia et al. [5] and Heylen et al. [6]. M.d.o.f. methods are more accurate for
structures with closely spaced modes, particularly when heavily damped. However, s.d.o.f.
methods are quick, rarely involving much mathematical manipulation of the data, and give
sufficiently accurate results of modal parameters for structures with well-separated modes. As
indicated at the end of Section 4, the modal parameter estimation method presented is this paper
which is based on the wavelet transform of FRFs should be considered as a s.d.o.f. method.
The methods of modal parameters estimation which are based on the integral transform

analysis of dynamic responses of systems can be classified in two categories: some of these
methods consider time responses such as impulse response functions, see for instance Refs. [7–9],
while others analyze frequency responses which are most commonly FRFs [10,11]. Recently Yin
and Argoul [12] introduced the wavelet transform of the FRFs using Cauchy’s wavelet to estimate
modal parameters. Applications to both analytical data and experimental data have shown the
efficiency of this method [12,13]. In this paper, some theoretical generalizations and numerical
convergence studies of this method are presented.
First, the analytical expression for wavelet transforms of FRFs, using a complex analytic

function as a wavelet, is established. This analytical expression would be useful for the selection of
appropriate wavelets for the analysis of FRFs. Then complex fractional functions are used as
wavelets, because of their similarity to FRFs. The property of the wavelet transform of FRFs with
this wavelet will be studied and a method for estimating the dampings and natural frequencies will
be proposed. Finally, the method will be applied to both analytical and experimental data of
FRFs in order to evaluate the accuracy of the method.

2. Brief presentation of the continuous wavelet transform

The continuous wavelet transform is presented briefly here. More information about this
integral transform can be found in many books [14–16].
The continuous wavelet transform of a function f ðyÞ is defined as follows

W ða; bÞ ¼
1ffiffiffi
a

p Z þN

�N

f ðyÞf�
y � b

a

� �
dy; ð1Þ

where b and a are, respectively, position and scale variables. The scale variable a is positive.
The signal to be analyzed is f ðyÞ and f�ðxÞ is the conjugate of fðxÞ; the transforming
function called the mother wavelet which serves as a prototype for generating the other window
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functions (wavelets)

fa;bðyÞ ¼
1ffiffiffi
a

p f
y � b

a

� �
: ð2Þ

The continuous wavelet transform can be defined as the inner product of the signal to be
analyzed with wavelets

W ða; bÞ ¼
Z þN

�N

f ðyÞf�a;bðyÞ dy: ð3Þ

In general, fðxÞ must oscillate around zero and his magnitude must decay sufficiently fast when
the value of x increases.
The wavelet transform can be seen as a measure of similarity between the wavelet and the signal

to be analyzed. If the signal has a major component of frequency corresponding to the current
scale, then the wavelet at the current scale will be similar or close to the signal at the particular
location where this frequency component occurs. Therefore, the continuous wavelet transform
will give a large value at this location and this scale. This feature of wavelet transform is essential
for the understanding of the method proposed in this paper for the natural frequencies and
dampings estimation.

3. Wavelet transform of FRFs

For systems whose motions are described by differential equations with constant coefficients,
the FRFs are rational and can be written as a ratio of two polynomials in jo

HðoÞ ¼
P2N�1

r¼0 arð joÞ
rP2N

r¼0 brð joÞ
r
; ð4Þ

or as a sum of partial fraction functions

HðoÞ ¼
XN

r¼1

Ar

jo� lr

þ
A�

r

jo� l�r

� 	
; ð5Þ

where N is the number of degrees of freedom, and lr ¼ sr þ jor is the rth complex pole, sro0;
j ¼

ffiffiffiffiffiffiffi
�1

p
; Ar is the rth residue, l�r and A�

r are the conjugates of lr and Ar; respectively.
The continuous wavelet transform of the FRF is defined by

W ða; bÞ ¼
1ffiffiffi

a
p Z þN

�N

HðoÞf�
o� b

a

� �
do: ð6Þ

In order to simplify the presentation, let c denote the conjugate of f; that is

c
o� b

a

� �
¼ f�

o� b

a

� �
: ð7Þ
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Taking Eq. (5) into consideration, Eq. (6) becomes

W ða; bÞ ¼
�jffiffiffi

a
p XN

r¼1

Ar

Z þN

�N

cððo� bÞ=aÞ
ðoþ jlrÞ

doþ A�
r

Z þN

�N

cððo� bÞ=aÞ
ðoþ jl�r Þ

do
� �" #

: ð8Þ

The integrals in the last equation can be evaluated, as in Ref. [10], by considering the following
curvilinear integral in the complex planI

cððs � bÞ=aÞ
ðs þ jlrÞ

ds ¼
Z þR

�R

cððs � bÞ=aÞ
ðs þ jlrÞ

ds þ
Z

HC

cððs � bÞ=aÞ
ðs þ jlrÞ

ds: ð9Þ

The integration paths are shown by the right graph in Fig. 1. For the second integral and the
third integral, they are, respectively, the straight line oriented from s ¼ ð�R; 0Þ to s ¼ ðþR; 0Þ and
the half circle HC oriented from s ¼ ðþR; 0Þ to s ¼ ð�R; 0Þ: The close path of the first integral is
composed of the straight line and the half circle.
According to Cauchy’s integral formula, any complex analytic function at any point in a zone

can be represented using the values of this function on the boundary that delimits this zone

f ðzÞ ¼
1

2pj

Z
G

f ðsÞ
ðs � zÞ

ds: ð10Þ

From this formula and provided that cððs � bÞ=aÞ is analytic inside the half disc, the first
integral in Eq. (8) is just the value of 2pjcððs � bÞ=aÞ with s taken to be �jlrI

cððs � bÞ=aÞ
ðs þ jlrÞ

ds ¼ 2pjc
�jlr � b

a

� �
: ð11Þ

Because the magnitude of c tends sufficiently fast to zero, the last integral over the half circle in
Eq. (9) will tend to zero when R becomes infiniteZ

HC

cððs � bÞ=aÞ
ðs þ jlrÞ

ds-0 when R-N: ð12Þ
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Fig. 1. The complex function fxðsÞ ¼ ð1þ jsÞ�ðxþ1Þ is defined and analytic in the whole complex plane except on the

superior part of imaginary axis above the point ð0; jÞ as shown by the left graph, its conjugate cxðsÞ ¼ ð1� jsÞ�ðxþ1Þ is

defined and analytic in the whole complex plane except on the inferior part of imaginary axis under the point ð0;�jÞ as
shown by the right graph.
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From Eqs. (11) and (12), it can be deduced thatZ þN

�N

cððo� bÞ=aÞ
ðoþ jlrÞ

do ¼ 2pjc
�jlr � b

a

� �
: ð13Þ

In a similar way, one can obtainZ þN

�N

cððo� bÞ=aÞ
ðoþ jl�r Þ

do ¼ 2pjc
�jl�r � b

a

� �
: ð14Þ

From the last two equations, the following result is established:

W ða; bÞ ¼
2pffiffiffi

a
p XN

r¼1
Arc

�jlr � b

a

� �
þ A�

r c
�jl�r � b

a

� �� 	
: ð15Þ

This is a rather general result for wavelet transform of the FRFs. To construct a method for
estimating natural frequencies and damping ratios, complex fractional functions will be used as
wavelets in the next section.

4. Use of complex fractional functions as wavelet

Considering a complex variable s and the following complex fractional function

fxðsÞ ¼
1

ð1þ jsÞxþ1
¼ e�ðxþ1Þlogð1þjsÞ; ð16Þ

where x is a positive real number. The complex logarithm logðzÞ is defined and analytic in the
whole complex plane with a ‘‘slit’’ which is the negative real axis. So fxðsÞ is defined and analytic
in the whole complex plane with a ‘‘slit’’ which is the semi-infinite vertical line above the point
s ¼ ð0; jÞ; as shown by the left graph in Fig. 1.
The complex function cxðsÞ; conjugate of fxðsÞ

cxðsÞ ¼ f�x ðsÞ ¼
1

ð1� jsÞxþ1
¼ e�ðxþ1Þlogð1�jsÞ ð17Þ

is defined and analytic in the whole complex plane with a ‘‘slit’’ which is the semi-infinite vertical
line under the point s ¼ ð0;�jÞ; as the right graph in Fig. 1 shows. When x is an integer number,
fxðsÞ is the Cauchy’s wavelet.
It can be verified that, for x > 0; the complex fractional function wavelet fxðsÞ satisfies the

admissibility condition. The real and imaginary parts of fxðsÞ for x ¼ 1; 2:5; 4:5; 8 are presented in
Fig. 2.
Considering the continuous wavelet transform of the FRF and multiplying the transformed

function by ð
ffiffiffi
a

p
Þ�x

Hxða; bÞ ¼ a�ðxþ1Þ=2
Z þN

�N

HðoÞf�x
o� b

a

� �
do: ð18Þ
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Fig. 2. Real part (left column) and imaginary part (right column) of the complex fractional function wavelets fxðsÞ for
x ¼ 1; 2.5, 4.5 and 8.
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Since cx is the conjugate of fx; this can be written as follows

Hxða; bÞ ¼ a�ðxþ1Þ=2
Z þN

�N

HðoÞcx

o� b

a

� �
do: ð19Þ

The function cxðsÞ is analytic in the half plane over the real axis, so is cxððo� bÞ=aÞ because a is
positive. Then Eq. (15) applies

Hxða; bÞ ¼ 2paðxþ1Þ=2
XN

r¼1

Ar

ða þ jb � lrÞ
xþ1 þ

A�
r

ða þ jb � l�r Þ
xþ1

 !
: ð20Þ

Since lr ¼ sr þ jor; the last equation can be written as

Hxða; bÞ ¼ 2paðxþ1Þ=2

�
XN

r¼1

Ar

½a � sr þ jðb � orÞ�xþ1
þ

A�
r

½a � sr þ jðb þ orÞ�xþ1

� �
: ð21Þ

Remember that sr is negative and a positive. Therefore the function Hxða; bÞ is always regular.
It will be shown that the modulus of Hxða; bÞ presents a local maximum in the vicinity of each
point ða; bÞ ¼ ð�sr;orÞ: Note that �sr is positive.
It will be supposed that in the vicinity of ð�sr;orÞ; i.e., if

a þ sr

sr

{1 and
b � or

sr

{1; ð22Þ

the behaviour of Hxða; bÞ in Eq. (21) is dominated by one single partial fractional function

Hxða; bÞE
2paðxþ1Þ=2Ar

½a � sr þ jðb � orÞ�xþ1
: ð23Þ

Then the power expansion of the modulus of the regular function Hxða; bÞ until second order in
the vicinity of ð�sr;orÞ can be easily established

jHxða; bÞjE
pjArj

2xjsrj
ðxþ1Þ=2

1�
x þ 1
2

a þ sr

2sr

� �2
�

x þ 1
2

b � or

2sr

� �2" #
: ð24Þ

The above equation means that, provided that Eq. (23) is a good approximation, the absolute
value of Hxða; bÞ describes roughly a paraboloid surface of revolution the summit location of
which is close to ð�sr;orÞ: This property suggests that the values of sr and or could be estimated
by determining the local maximum location of jHxða; bÞj; i.e., if jHxðam; bmÞj is a maximum, then

srE� am; orEbm: ð25Þ

The values of am and bm depend a priori on the real variable x: This dependence will be studied
for analytical data of FRFs in Section 5 and experimental data of a FRF in Section 6. To evaluate
the stablility and the accuracy of the estimation of both natural frequency and damping, an
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estimation stablility indicator function defined by the following equation:

IðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½amðx þ dÞ � amðxÞ�2 þ ½bmðx þ dÞ � bmðxÞ�2

p
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2mðxÞ þ b2mðxÞ

p ð26Þ

will also be studied, d > 0 being a small increment of x (d ¼ 0:125 in Sections 5 and 6).
Due to the approximate relationship (23), the modal parameter estimation method described in

this section should be considered as a s.d.o.f. method in a classification. However, there is a small
difference between this method and classical s.d.o.f. methods. When the modal parameters of a
mode are under estimation, in classical s.d.o.f. methods, the contribution of other modes to the
FRF is neglected or approximated, while in the method proposed in this paper, the contribution
of other modes to the wavelet transform of the FRF is neglected, see Eq. (23). This difference
could explain why this s.d.o.f. method is more accurate than other s.d.o.f. methods such as the
finite difference formulas (see Section 6).

5. Application to analytical data

Two-degrees-of-freedom systems are considered. The natural frequencies and dampings have
been estimated for a FRF with two well-separated modes and a FRF with two closely spaced
modes. In the case of well-separated modes, the undamped natural frequencies are 100 and
150 Hz: In the case of closely spaced modes, they are 100 and 107 Hz: The damping ratio is 2.5%
in both cases.
The dependence on x of the estimated natural the frequencies, damping ratios and the

estimation stability indicator function IðxÞ defined by Eq. (26) are shown by the curves in Figs. 3
and 4. The estimated values are normalized, i.e., they have been divided by the correspondent
exact values. The estimation stability indicator function decreases and the estimation accuracy
increases as x increases, i.e., the higher the value of x the better the estimate. The estimation
stability indicator function decreases rapidly when the value of x is small. When the value of x is
beyond 2 for well-separated modes and beyond 4 for poorly separated modes, the indicator
function becomes stable and the estimation becomes accurate.
These results suggest that the estimation is accurate if the estimation stability indicator function

is stable and its values are small.

6. Application to experimental data

Now the experimental data of the FRF of a simple structure is considered. This structure is
built from three Plexiglas beams positioned along a cross. The beams have a thickness of 0:5 cm
and a width of 2 cm: The upper beam and the lower beam are horizontally placed, parallel to each
other and of a length of 15:4 cm: The beam in the middle is also horizontally placed but
perpendicular to the two others and a little shorter with a length of 12:9 cm: A random excitation
signal has been used. This random excitation comes from below by a shaker (BK 4810) and is
transmitted to the structure through an impedance head (BK 8001) which allows measurement of
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the acceleration and force just under the center of the structure. The acceleration is integrated
twice to get the displacement and, the FRF between the displacement and the force is recorded by
a signal analyzer (DI-PL202). The experimental data of the modulus of the FRF is presented in
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modes, left column for first mode and right column for second mode, the estimated values of natural frequency and

damping are normalized by the exact values.

H.P. Yin et al. / Journal of Sound and Vibration 271 (2004) 999–1014 1007



Fig. 5. The FRF is normalized by the maximum value obtained near the first resonance. Three
modes appear in the frequency range from 0 to 1000 Hz: The first two are coupled while the third
is relatively isolated.
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To study the dependence of estimation on x; the value of x has been taken from 2 to 8. The
integrals related to the wavelet transform of the FRF have been computed for different values of a

and b: Local maxima of the modulus of Hxða; bÞ which is the wavelet transform of the FRF
multiplied by ð

ffiffiffi
a

p
Þ�x have been located. Then the values of b and a corresponding to theses

maxima are used for estimating the natural frequencies and damping ratios, respectively.
The complex exponential method (a m.d.o.f. method) will be used as the reference method.

Indeed, this method, although it appears to be sensitive to noise, is often used as a reference
method [6]. By this method, the damped natural frequencies of the three modes are estimated to
be 318.6, 341.1 and 508:4 Hz; and the damping ratios are estimated to be 2.56%, 2.32%
and 2.23%.
The estimation results using the wavelet transform method described in Sections 3 and 4 for the

three modes in the frequency range under consideration are presented in Figs. 6–8. Each value has
been divided by that estimated by the complex exponential method. The estimation stability
indicator function IðxÞ is also presented.
For the third mode as shown in Fig. 8, the estimation stability indicator function decreases

rapidly as x increases until 2. Then this function becomes stable and the estimation results too.
But when x is greater than 6; they become unstable. For the first mode and the second mode as
shown in Figs. 6 and 7, the estimation stability indicator function decreases rapidly as x increases
until 4. Then this function becomes stable. But when x is beyond 5.5 for the first mode or beyond
6.875 for the second mode, the results become unstable. The deviation of the asymptotical
behavior for the values of x beyond 5.5, 6.875 and 6 for respectively the first, second and third
mode between the estimation results of the analytical data in Section 5 and those of the
experimental data in this section, is probably due to the noise in the experimental data or the
non-linear terms in the stiffness of the Plexiglas beams.
By comparing these results with those of analytical data in Section 5, it can be assumed that

when the value of x is in an intermediate range where the estimation stability indicator function is
stable and minimum, the estimation results are optimal. To involve a sufficient number of
estimations in the calculation of the final average estimation, this intermediate range should be
large enough. For our experimental data, this intermediate range should be xA½4; 5:5� in which
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Fig. 7. Dependence on x of the estimated values of the natural frequency normalized by 341:1 Hz; the damping ratio
normalized by 2.32% and the indicator function for the second mode. The reference values are estimated by the

complex exponential method.
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Fig. 8. Dependence on x of the estimated values of the natural frequency normalized by 508:4 Hz; the damping ratio
normalized by 2.23% and the indicator function for the third mode. The reference values are estimated by the complex

exponential method.
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IðxÞ is stable and smaller than 0:3% for the first mode, xA½4; 6:875� in which IðxÞ is stable and
smaller than 0:25% for the second mode and xA½2; 6� in which IðxÞ is stable and smaller than
0:05% for the third mode. The average estimation results of the natural frequencies and the
dampings for the three modes have been computed in these ranges and are given in Table 1.
Obviously, the estimation of the third mode is much better than that of the two coupled modes
since IðxÞ is much more stable and smaller for the third mode than for the two others. Compared
to the estimation obtained from the very simple three-point finite difference formula, the
estimation based on the wavelet transform of FRF is relatively close to the estimation obtained by
using the complex exponential method, especially for the second mode.

7. Discussion and concluding remarks

The method for natural frequencies and dampings estimation proposed in this paper is based on
the wavelet transform of frequency response functions (FRFs). The continuous wavelet transform
of the FRF has been calculated analytically for any complex analytic function wavelets by using
Cauchy’s integral formula. When complex fractional functions are used as wavelets, the modulus
of transformed function multiplied by ð

ffiffiffi
a

p
Þ�x shows local maxima, x being a real variable for

generating different mother wavalets. The natural frequencies and dampings can then be
determined by searching the locations of these maxima.
Applications to both analytical and experimental data of FRFs have been made. The results

have been compared to the exact values in the case of analytical data and to those estimated by the
complex exponential method in the case of experimental data. The dependence on x of the
estimation results has been studied. In the case of analytical data, the estimation accuracy always
increases with the values of x; while in case of experimental data, the estimation accuracy
increases rapidly when x is small and then become stable as in the case of analytical data, but
diverge when x is beyond 5 or 6. The optimal estimation should be considered as the average
results in an intermediate range of x where the estimation results are stable. Numerical results
have shown that sufficiently accurate estimation for natural frequencies and damping ratios could
be obtained with this method even if modes are not well separated.
The advantages of the method presented in this paper are the simplicity and the ability to give a

quick estimation since only integrals need to be computed numerically. For closely spaced modes,
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Table 1

Results of the natural frequencies and dampings of the three modes estimated by the method based on the wavelet

transform of FRF, the three-point finite difference formula and the complex exponential method

Mode number 1 2 3

FRF wavelet Pole �50:4þ 2005:0j �52:1þ 2143:9j �72:4þ 3197:9j
Transform method Damping ratio 0.0252 0.0243 0.0226

Three-point finite Pole �50:7þ 1994:0j �45:2þ 2154:8j �69:1þ 3195:2j
Difference formula Damping ratio 0.0254 0.0210 0.0216

Complex Pole �51:2þ 2001:9j �49:7þ 2143:2j �71:3þ 3194:5j
Exponential Damping ratio 0.0256 0.0232 0.0223
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this method is not as accurate as m.d.o.f. methods. However, m.d.o.f. methods are time
consuming and involve difficult numerical tasks and much mathematical manipulation of the
data. Furthermore, the use of different methods is important in order to validate estimated modal
parameters by comparison. It is interesting for engineers to compare the estimation of m.d.o.f.
methods with a quick and sufficiently accurate estimation of a s.d.o.f. method. Besides, if accurate
estimation is required, one can improve, via an iterative procedure, the accuracy of the presented
method like other s.d.o.f. methods by subtracting the effect of modes already analyzed before
analyzing the one of interest.
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